

II Semester M.Sc. Degree Examination, June/July 2014 (RNS) (2011 – 12 & Onwards) MATHEMATICS M – 203 : Functional Analysis

Time : 3 Hours

Instructions : 1) Answer any five questions choosing atleast two from each Part. 2) All questions carry equal marks.

PART-A

- 1. a) Define a Banach Space. Show that a non-zero normed linear space N is a 8
 - b) Let B be a Banach space and let M and N be linear subspaces of B. If $B = M \oplus N$ and $||z||_1 = ||x|| + ||y||$ then prove that $||\bullet||_1$ is a norm on B. Further prove that $(B, \|\bullet\|_1)$ is complete if M and N are closed in B.
- 2. a) Show that the set B(N, N') of all continuous linear transformations a normed linear space from N to N' is a complete normed linear space if N' is complete. 10
 - b) If S is a continuous linear transformation of a normed linear space N to a normed linear space N' and if M is its null space then show that S induces a natural linear transformation S' of $\frac{N}{M}$ into N' such that || S || = || S' ||.
- 3. a) Let M be a linear subspace of a normed linear space N. If $x_0 \notin M$, $x_0 \in N$ and if $M_0 = M \in [x_0]$, then prove that f can be extended to a functional f_0 on M_0 such that $\|f_0\| = \|f\|$.
 - b) Let M be a closed linear subspace of a normed linear space N and let $x_0 \notin M$. If d is the distance from x_0 to M, show that there exists $h \in N^*$ such that $h(x_0) = 1$, $||h|| = Y_d$.

7

Max. Marks: 80

8

6

9

PG – 254

- 4. a) Show that there is a natural embedding of N into N^{**} obtained by the isometric isomorphism $x \to F_x$. (where $F_x :: N^* \to F : F_x$ (f) = f (x), $\forall x \in N, f \in N^*$). 8
 - b) State and prove closed graph theorem.

PART-B

- 5. a) Define a Hilbert Space. Show that the following inequalities hold in a Hilbert space H.
 - i) $| < x, y > | \le ||x|| ||y||$
 - ii) $||x + y|| \le ||x|| + ||y||$, for all x, $y \in H$.
 - b) Let M be a closed linear subspace of a Hilbert space H. If $x \in H$ and $x \notin M$ then prove that there is a unique vector $y_0 \in M$ such that $||x y_0|| = d(x, M)$. 5
 - c) If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$ then prove that M + N is a closed linear subspace.
- 6. a) Prove that every nonzero Hilbert space contains a complete orthonormal set.
 - b) Let H be a Hilbert space and $\{e_i\}$ be an orthonormal set in H. Then prove that the following are equivalent :
 - i) $\{e_i\}_{i=1}^n$ is complete
 - ii) $x \perp e_i, \forall i \Rightarrow x = 0$

iii)
$$\mathbf{x} \in \mathbf{H} \Rightarrow \mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{e}_i \rangle \mathbf{e}_i$$

iv)
$$\mathbf{x} \in \mathbf{H} \Rightarrow \|\mathbf{x}\|^2 = \sum_{i=1}^{n} |\langle \mathbf{x}, \mathbf{e}_i \rangle|^2$$
. 8

c) Show that in a Hilbert space H, each $y \in H$ gives rise to a $f_y \in H^*$.

3

6

5

5

8

PG – 254

5

6

5

7. a) Show that the self adjoint operators is B (H), where H is a Hilbert space form a closed real linear space.

-3-

- b) Show that an operator T on a Hilbert space H is self adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.
- c) Show that an operator $T \in B(H)$ is normal if and only if its real and imaginary parts commute.
- 8. a) If P_1, P_2, \ldots, P_n are projections on closed linear subspaces M_1, M_2, \ldots, M_n of a Hilbert space H then prove that $P_1 + P_2 + \ldots + P_n$ is a projection if and only if $\{P_i\}$ are pair wise orthogonal. 8
 - b) State and prove spectral theorem.

8

BMS